Overview
We have an input array that is sorted but is pivoted at a certain index. For example, consider below array
[1, 3, 5, 7, 9]
It has been rotated and pivoted at index 3
[5, 7, 9, 1, 3]
The objective is to find the pivot index. So the answer for the above array will be 3. If the array is not pivoted then it should return -1. For eg for below input array, it should return -1
[0, 1, 2, 3, 4]
Other examples
Pivoted Array: [7, 9, 1, 3, 5]
Pivot Index: 2
Pivoted Array: [9, 1, 3, 5, 9]
Pivot Index: 2
Pivoted Array: [1, 3, 5, 7, 9]
Pivot Index: -1
The expected time complexity to find the pivot index is O(logn). So we have to do a binary search with some modifications to find the pivot index.
This will be the strategy
- Do a binary search. For every mid element check if mid or mid+1 is the pivot
- If the value at mid is less than the value at the start of the input array then search on the left side of mid
- If the value at mid is greater than the value at the start of the input array then search on the right side of mid
Below is the program for the same.
package main
import "fmt"
func main() {
pivot := findPivot([]int{0, 1, 2, 3, 4, 5})
fmt.Println(pivot)
pivot = findPivot([]int{1, 2, 3, 4, 5, 0})
fmt.Println(pivot)
pivot = findPivot([]int{2, 3, 4, 5, 0, 1})
fmt.Println(pivot)
pivot = findPivot([]int{3, 4, 5, 0, 1, 2})
fmt.Println(pivot)
pivot = findPivot([]int{4, 5, 0, 1, 2, 3})
fmt.Println(pivot)
pivot = findPivot([]int{5, 0, 1, 2, 3, 4})
fmt.Println(pivot)
}
func findPivot(nums []int) int {
return findPivotUtil(nums, 0, len(nums)-1)
}
func findPivotUtil(nums []int, start, end int) int {
if start > end {
return -1
}
mid := (start + end) / 2
if mid+1 <= end && nums[mid] > nums[mid+1] {
return mid + 1
}
if mid-1 >= start && nums[mid] < nums[mid-1] {
return mid
}
if nums[mid] < nums[start] {
return findPivotUtil(nums, start, mid-1)
}
return findPivotUtil(nums, mid+1, end)
}
func binarySearch(nums []int, start, end, target int) int {
if start > end {
return -1
}
mid := (start + end) / 2
if nums[mid] == target {
return mid
}
if target < nums[mid] {
return binarySearch(nums, start, mid-1, target)
} else {
return binarySearch(nums, mid+1, end, target)
}
}
Output
-1
5
4
3
2
1
Note: Check out our Golang Advanced Tutorial. The tutorials in this series are elaborative and we have tried to cover all concepts with examples. This tutorial is for those who are looking to gain expertise and a solid understanding of golang - Golang Advance Tutorial
Also if you are interested in understanding how all design patterns can be implemented in Golang. If yes, then this post is for you -All Design Patterns Golang